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Continuous systems and their 

implementation 

Before contact DNA and LtDNA – Forensics dealt with 

biological fluids, which most commonly gave simple 

single source profiles  

•no dropout 

•no complicating factors 

 

If any loci were incomplete they were omitted from the 

calculation 

 

 

Used basic profile frequencies based on Hardy-Weinberg 

Equilibrium and then later using subpopulation model 

In the beginning…  

Then contact DNA came along and everything became 

complicated  

(in SA this was largely due to the Snowtown murders in 90s) 

 

•An abundance of new sample types were now available 

•Higher proportion of these were mixtures 

•There were many instances of incomplete profiles 

 

Added to this: 

•DNA profiling kits were getting more powerful and sensitive 

•Lab hardware was getting faster and more sensitive 

•Labs began experimenting with ways of enhancing profiles 

In the beginning…  

Two methods evolved to apply statistical weightings to 

this evidence: 

 

•Random Man Not Excluded (RMNE) – a frequentist 

method that determined what proportion of the 

population would not be excluded from an observed 

mixed profile 

 

•Likelihood Ratio (LR) – a Bayesian method that 

determined the probability of obtaining the observed 

mixed profile given two competing hypotheses 

 

I will be talking about LR during this presentation 

Most LR methods can be thought of using the same 

formulae 

 

 

They just use different methods of ‘weighting’ genotype 

combinations 

 

 

Our ability to generate weightings has been refined as our 

ability to calculate them and our understanding of DNA 

profiles has improved 



2 

Interpretation from 

binary to 

continuous 

Moving to a continuous method 

The first part of this talk is about moving from “binary” to 

“continuous” systems of interpretation 

 

Binary system: 

A system of rules and thresholds where certain aspects of the 

profile where ruled as either ‘acceptable’ or ‘inacceptable’ – 

two opposite interpretations, hence binary 

 

Subject profiles to this binary system of rules, then interpret 

 

Analogous to subjecting an image to a series of rules that 

change it into black and white (binary) and then trying to make 

interpretations from it 

Moving to a continuous method 

Sometimes, doing this will fit the original very well and 

interpretation will be easy 

Reference Binary evidence 

Based on this evidence it would be pretty simple to conclude 

that the reference person is in the evidence image 

Moving to a continuous method 

It gets a lot more complicated to make interpretations 

when the evidence image becomes more complex 

Reference Binary based evidence 

Now much less clearas to whether the reference person 

is in there or whether they have left the building 

Moving to a continuous method 

Adding to the complexity is the way in which the binary rules 

are applied 

Imagine writing a set of rules 

would allow people to draw 

an image in black and white 

 

And that everyone had to 

follow those rules and apply 

them to every image they 

encounter regardless of: 

• Colour depth 

• Brightness 

• Complexity 

• etc 

Moving to a continuous 

method 

You are guaranteed to end up 

with a number of variations 

 

And they could all be 

interpreted slightly differently 
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Moving to a continuous method 

Ideally we want to carry out interpretations on the initial image 

Using all available information 

 

Without any rules 

 

This is the idea behind moving 

to a continuous system 

 

There are no rules that you 

need to fit your evidence into 

Now applying this idea to DNA profiles 

Binary DNA profile interpretation 

We think these might be the profiles of the two contributors, 

but how can we make this judgement in an objective and 

consistent manner ? 

Notice that there are two contributors, a major and a minor 

and we want to interpret profiles for both 

-Heterozygous balance 

Binary DNA profile interpretation 

-Heterozygous balance 

-Dropout / Homozygous 

Notice that there are two contributors, a major and a minor 

and we want to interpret profiles for both 

Binary DNA profile interpretation 

-Heterozygous balance 

-Dropout / Homozygous 

-Stutter ratios 

Notice that there are two contributors, a major and a minor 

and we want to interpret profiles for both 

Binary DNA profile interpretation 

-Heterozygous balance 

-Dropout / Homozygous 

-Stutter ratios 

-Mixture ratios 

Mx 

Mx 

Then we make a judgement 

on whether we can interpret 

single component(s) from this 

profile 

Notice that there are two contributors, a major and a minor 

and we want to interpret profiles for both 

Binary DNA profile interpretation 
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Systems of thresholds are limited 

-OK for simple scenarios, but break down when profiles 

become complex 

 

-Suffer from ‘falling off the cliff’ effect 

 

-Waste a lot of data 

 

-Has difficulties handling non-concordances 

 

-Cannot be applied consistently between analysts 

 

-Leads to inconsistencies in interpretations, potentially 

unequal justice outcomes 

Do away with all thresholds 

Mx 

Mx 

Easier said than done 

Do away with all thresholds 

How do you interpret a DNA profile when anything is possible ? 

 

This is the challenge – we must make use of the fact that while 

everything is possible, they are not equally probable 

Systems of 

interpretation 

•Loci must be complete (i.e. given some threshold, 

dropout cannot be possible in the observed profile) 

 

•Incomplete loci are omitted from the calculation 

 

•Peak heights are not taken into account.  

 

•All genotypes are weighted equally 

simple mixture analysis  

•Only required a dropout threshold to designate loci as in 

or out 

 

•A highly restrictive method that wastes an enormous 

amount of profile information 

 

•This is the method used in DNAmix 

simple mixture analysis  
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A      B     C     D 

Using only qualitative information 

about which peaks are present the 

possible genotypes of unknowns 

are: 

[A,B] & [C,D] 

[A,C] & [B,D] 

[A,D] & [B,C] 

[C,D] & [A,B] 

[B,D] & [A,C] 

[B,C] & [A,D] 

 

With each combination being 

weighted equally with 1 

A      B     C     D 

)|Pr(2)|Pr(2

)|Pr(2)|Pr(2

)|Pr(2)|Pr(2

)|Pr(2)|Pr(2

)|Pr(2)|Pr(2

)|Pr(2)|Pr(2

1

ABBCCDADABCDBC

ABADCDBCABCDAD

ABBDCDACABCDBD

ABACCDBDABCDAC

ABCDCDABABCDCD

ABABCDCDABCDAB
LR














If our suspects are [A,B] and [C,D] 

and we are considering the 

hypotheses: 

Hp = 2 Suspects 

Hd = 2 unknowns 

Normally the equation would be simplified by collecting and 

cancelling common elements, however I will leave them 

expanded as it will make later demonstrations easier 

Use a set of predefined threshold to determine whether genotypes 

are included in the LR calculation 

– effectively weighting them with 0 or 1. 

 

-Loci still needed to be complete (i.e. no possibility of dropout) 

- all accepted genotype combinations are weighted equally 

 

The thresholds used can vary, however will typically include: 

•Heterozygous balance and 

•Mixture proportions 

 

This method can be used in conjunction with other methods to 

remove some genotype combinations and weight the remainder in 

some way 

 

Software – PENDULUM employs an advanced for of this method  

Clayton rules  

A      B     C     D 

Here the genotypes are either included 

or excluded from the list of unknowns 

depending on a set of rules. For 

Pr(E|Hd) the 2 unknowns could be: 

 

[A,B] & [C,D] - accepted 

[A,C] & [B,D] – rejected (Het imbalance) 

[A,D] & [B,C] – rejected (Het imbalance) 

[C,D] & [A,B] – rejected (ratio flip)  

[B,D] & [A,C] – rejected (Het imbalance) 

[B,C] & [A,D] – rejected (Het imbalance) 

)|Pr(2)|Pr(2

1

ABABCDCDABCDAB
LR




Now the first combination is weighted with 1 

The other combinations are weighted with 0 – due to failing rules 

Gave the ability to handle dropouts 

2p rule  

POI – [A,A] 

 

 

 

 

CS – [A] 

Hypothesis 1 = POI is the source of DNA 

and dropout has not occurred 

 

Hypothesis 2 = Someone else is the 

source of DNA and are either: 

[A,A] – and dropout has not occurred 

[A,Q] – and the Q has dropped out 

)|Pr(2

1

AAA
LR 

This meant loci no longer needed to be complete 

2p rule  

A big step forward – not as much information wasted 

 

Problem handling non-concordances, e.g. 

CS = [A] 

POI = [A,B] 

If POI is the source of the DNA then dropout must have 

occurred 

 

-This is ok, when [A] is weak, but becomes a problem as [A] 

approached the homozygous threshold 

 

-Studies have found that 2p rule is not always conservative 
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Better way to deal with dropouts was developed 

•Able to handle non-concordances 

•Able to handle drop-in 

 

In combination these two probabilities produced a type of 

weighting for each genotype combination. 

Stage 4 – Pr(D) and Pr(C)  

Has been around for over a decade  

– LikeLTD, Rudin and Lollemueller 

Pr(D) and Pr(C) are constants in the equations and do not 

vary with peak heights 

 

This means that a peak expected at 1000rfu has the same 

dropout probability as a peak at 50rfu, however as an 

approximation the model works very well. 

 

It can be extended to have differing probabilities based on 

heterozygous or homozygous peaks, or even to assign 

differing probabilities to differing individuals (in the case of a 

major/minor mix) 

 

Gill & Haned have developed software that uses this method 

- LRmix 

Stage 4 – Pr(D) and Pr(C)  

LRmix-style calculation 

A      B     C 

Each genotype is included in the model, 

but weighted by probabilities of dropout 

or drop-in: 

 

Take genotype [A,B] & [C,Q] where [Q] 

is any allele other than [A], [B] or [C] 

(and so has dropped out) 

 

This requires: 

3 non-dropouts (each with probability D) 

1 dropout (with probability D) 

3 non-drop-ins (with probability C) 
33 CDD

And so genotype 

[A,B] & [C,Q]  has 

weighting: 

LRmix-style calculation 

A      B     C 

)|Pr()|Pr(

....

)|Pr(2)|Pr(

)|Pr(2)|Pr(

)|Pr(2)|Pr(

)|Pr()|Pr(

34

2

22

22

2

33

ABCDFFABCDFFCD

AAABCDAFABCDAACDCD

AAABCDACABCDAACCD

AAABCDABABCDAACCD

AAABCDAAABCDAACCD

CDD
LR












Again with suspects 

[A,B] and [C,D] and 

hypotheses: 

Hp = 2 Suspects 

Hd = 2 unknowns 

  

Good as it doesn’t 

eliminate any 

possible genotypes 

Usually the probability of drop-in is quite 

small so genotype combinations that 

require drop-in get a low weighting and 

do not have much effect on the overall 

LR (unless the scenario under Hp 

requires a drop-in to have occurred) 

The first method that utilises peak height information and 

so a big step forward again in information usage 

 

 

Probabilities are assigned which vary with each instance 

of dropout or non-dropout depending on observed and 

expected peak heights 

 

 

Deals with non-concordances in a very robust manner 

‘drop’ method 

Simple to implement for single source cases but becomes 

complex to implement with mixtures without taking into 

account other factors (like heterozygous balance). 

 

 

Software that uses this idea is LoComatioN – which is not 

generally available 

‘drop’ method 
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The Drop method 

A      B     C 

Using the same scenario as previous 

 

All the same genotypes are 

considered 

Each genotype will have associated probabilities of dropin 

and dropout 

 

This time the probabilities are functions rather than constants 

The Drop method 

A      B     C 

)Pr()Pr()Pr()Pr()Pr()Pr()Pr( HCHBHAHDHCHBHA CCCDDDD

33 CDD

e.g. moving from LRmix to Drop 

model, the weighting for genotype 

[A,B] & [C,D] goes from this: 

to this 

Where Pr(DHD) is the probability of dropout for peak [D] expected 

to have been present at intensity HD 

 

Pr(DX) and Pr(CX) are functions of expected peak height 

Example graphs 

of Pr(D) and 

Pr(C) vs peak 

height 

 

Pr(C) graph is 

for 28 cycle 

standard work. 

It is set so that 

dropin is heavily 

penalised 

dropin 

The Drop method 

It is difficult to use this system beyond single source: 

To do this – need Hb and mix proportions 

A      B 

Suspect 1 [A,B]  

Suspect 2 [B,Q] 

For drop model we need to 

know the expected height of the 

dropped out allele 

A      B A      B 

or 

One may be 

favoured over 

the other 

depending of 

mix proportions 

The Drop method 

You then must fit a curve to the observed peak heights to 

obtain expected peak heights 

 

Then use expected peak heights for any dropouts 

 

Logistic curves have been used for this: 

The Drop method 

Weightings for genotype combinations are generated 

probabilistically. 

 

Similar to the drop model, except that probabilities can 

be based on: 

•Heterozygous peak balances 

•Mixture proportions 

•Dropout 

•Stutter 

•Degradation 

•Other factors if you are willing to make the model more 

complex. 

Probabilistic methods 
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- Very robust 

 

- Can deal with many situations 

 

- Must make simplifying assumptions before the 

calculation can be carried out for complex profiles with 

many variables 

 

DNA INSIGHT – works using this method 

Probabilistic methods 

In fully probabilistic system weightings are a combination of 

DNA profile measurements 

 

Can be as complex or as simple as desired 

 

Again no genotypes are discounted. 

 

No genotypes are certainties i.e. 0 < weighting(wx.) < 1 

)|Pr()|Pr(

....

)|Pr(2)|Pr(

)|Pr(2)|Pr(

)|Pr(2)|Pr(

)|Pr()|Pr(

.

.4

.3

.2

.1

.

ABCDFFABCDFFw

AAABCDAFABCDAAw

AAABCDACABCDAAw

AAABCDABABCDAAw

AAABCDAAABCDAAw

w
LR

n

x












A      B     C 

Probabilistic methods 

Uses MCMC to generate a sampling from the posterior 

distribution of the DNA profile properties. 

 

Very robust and in theory can handle any profile of any quality 

or complexity 

 

Also can handle very complex modelling as it is easily 

extendable 

 

Software that uses this method are - True Allele & STRmix 

Continuous method 
Provides distributions for parameters 

including genotype weightings 

Weightings are complex multiple integrals 

 

Formula below shows the weighting formula used by STRmix 

as an example 

)|Pr()|Pr(

....

)|Pr(2)|Pr(

)|Pr(2)|Pr(

)|Pr(2)|Pr(

)|Pr()|Pr(

.

.4

.3

.2

.1

.

ABCDFFABCDFFw

AAABCDAFABCDAAw

AAABCDACABCDAAw

AAABCDABABCDAAw

AAABCDAAABCDAAw

w
LR

n

x












LR is still 

constructed in the 

same way with 

each genotype 

combination being 

given a weighting 

.

.

M

Pr( | ,M)Pr(M) M
q

l

ar q

l a r

w E S d 

More easily written as Pr(Gc|Sq) - Probability of crime stain 

genotypic data given a genotype set 

Can write this as Pr( ) Pr( | ) Pr( )i i

i

A A B B di 

Law of total probability 

Pr( )A What if you need to know B to work out Pr(A) 

Pr(A|B) x Pr(B)  

What if there was a range of values that B could take ? 

 

Then you would need to step to integration 
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Law of total probability 

Pr(Sz=13) 

Imagine we wanted to know what the probability was of 

wearing size 13 shoes 

But we know that height and shoe size are related. So we 

split up the probability into people above and below 

150cm 

Pr(Sz=13|H>150cm)Pr(H>150cm) + Pr(Sz=13|H<150cm)Pr(H<150cm) 

We could just as validly split this into 10cm height groups: 

Pr(Sz=13|H =50-60cm)Pr(H =50-60cm) + 

Pr(Sz=13|H =60-70cm)Pr(H =60-70cm)+...+ 

Pr(Sz=13|H =220-230cm)Pr(H =220-230cm)  

Law of total probability 

Ultimately we could step from ever diminishing discrete 

values to the continuous equivalent (integral with respect 

to height) 

We don’t really care what people’s height is, we are just 

interested in the probability of them having size 13 shoes. 

 

So we integrate the conditional probability of having size 

13 shoes across the full possible range of heights 

What is Pr(GC|Sq)? 

We do exactly this same process with the parameters in 

our weighting formula – We use M for Mass 

Pr( | ) Pr( | , )Pr( )c q c q

M

G S G S M M dM 

To calculate the LR we are not 

really interested in the 

probabilities of the various 

mass parameters, however they 

are needed to calculate the 

probabilities of the evidence 

given genotype sets 

So we integrate the probability of the evidence given the 

genotype with respect to the mass parameters 
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Earlier we saw 

drop-in and 

dropout graphs 

 

Now we need 

biological 

models for other 

behaviours 

Continuous systems 

Stutter graphs 

Het balance / peak variance 
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As methods for DNA 

profile generation 

change so to will 

constants within the 

models 

 

But the models stay 

the same 

 

e.g. increasing PCR 

cycles means peak 

height is more 

variable, but still 

contains information 

Continuous systems 

28 cycle Hb/var graph 

34 cycle Hb/var graph 

Using MCMC for 

continuous models 
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Continuous models 

• DNA profiles problems can be really really complex 

• So complex that even with modern computers, it would be 

impossible to test every possible combination of 

answers…so we don’t 

• Instead the computer uses a process similar to the game of 

‘hot and cold’ with the DNA profile 

• This mathematical process is called Markov Chain Monte 

Carlo – or MCMC 

• MCMC allows the computation of complex problems with 

standard computers 

MCMC –maths 

best 

answer 

A possible answer 

MCMC ‘chain’ 

Hot guess 

Neutral guess 

Cold guess 

MCMC – maths 

We ran MCMC 

chain for 10 

moves 

 

Notice that it only 

had to test a small 

fraction of all the 

possible answers 

to get there 

 

Imagine if we ran 

it again for 10 

moves it would still 

get into good 

space, but 

probably a 

different square 

MCMC – the maths 

• The same thing happens when we analyse DNA profiles 

using STRmix – except that we run this ‘game’ for 

hundreds of thousands to billions of moves 

 

• Each time we run the same problem, STRmix gives a 

different answer 

 

• Importantly these answers are all clustered around each 

other and the amount that they would vary is small in 

relation to the size of the number itself 

MCMC – the maths 

• E.g. we could run the same problem through five times 

and get: 

– 4 million 

– 2 million 

– 10 million 

– 6 million 

– 1.5 million 

• Importantly all these results convey the same strength of 

evidence, i.e. something is millions of times more likely 

than something else 

• This is unique to MCMC, and does not occur for 

probabililistic modeling 

Two drawbacks 

 

1) The programs that are produced can be ‘black-boxes’ 

2) More dimensions  more computing power  longer runtime 

The first issue can be addressed in the design of the results 

and education 

The second issue can be addressed by using an adaptive 

Bayesian computing algorithms or advanced computational 

methods. 

 

Need to be carful not to violate point 1 

 

Fact remains that for really complex problems there is just no 

way the results can be instant 

MCMC – the maths 
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• The following is a two-locus example of how an expected 

DNA profile can be built up with only four paramaters: 

1) Genotypes 

2) Amount of DNA 

3) Degradation 

4) Locus specific amplification 

 

MCMC – the maths Start by building up the profile given the genotypes: 

[11,11]&[10,12] at locus 1 and [21,25]&[22,23] at locus 2 

10 11 12 21 22 23 25 

Locus 1 Locus 2 

At this point only genotypes have been chosen. DNA amounts 

and therefore peak heights have not been incorporated yet 

STRmix then chooses DNA amounts  
in this case [11,11]/[21,25] has 
contributed more DNA than 
[10,12]/[22,23] 

10 11 12 21 22 23 25 10 11 12 21 22 23 25 

Degradation is  then added for each contributor. 
 
In this case the larger contributor degrades more 
than the minor. 
 
Red arrows show the effect this has on expected 
peak heights 

10 11 12 21 22 23 25 

Degradation is dependent on fragment size, so as 
size increases the amount of degradation 
increases 

10 11 12 21 22 23 25 

This becomes… 
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10 11 12 21 22 23 25 

…this. 

Then stutter taken into account.  
 
Apportions total allelic product into allelic and 
stutter height 
 
Some of the total allelic product expected from 
DNA amount and degradation will become 
stutter as shown 

10 11 12 21 22 23 25 

So after stutter has been accounted for, 
the expected profile now appears as 
shown 

10 11 12 21 22 23 25 9 20 24 

locus specific amplification efficiencies 
 
In this example the first locus has a low 
efficiency (~50%) and the second locus 
has a high efficiency (~100%) 

10 11 12 21 22 23 25 9 20 24 

Now have a complete 2 locus expected DNA profile that can be 
compared to an observed profile 
 
This will determine likelihood of observed profile given parameter 
values used to generate it – Most importantly this includes the 
genotypes 

10 11 12 21 22 23 25 20 24 

Expected 

10 11 12 21 22 23 25 20 24 

Observed 

9 
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Expected 

10 11 12 21 22 23 25 20 24 

Observed 

Peak height differences between the expected and observed. 
 
If the test values for parameters are true then these differences must 
be accounted for by stochastic peak variation  - which can be 
assigned likelihoods  

9 

Random starting 

genotype 

Better genotype 
Better genotype 

Similar genotype 

Better genotype 

Better 

genotype 

Good 

genotypes 

Similar 

genotype 

The amount of time that the MCMC spends on each genotype set 
then becomes the ‘weighting’ for that genotype set 
 
Is then incorporated into the LR  e.g. From before 

)|Pr()|Pr(

....

)|Pr(2)|Pr(

)|Pr(2)|Pr(

)|Pr(2)|Pr(

)|Pr()|Pr(

.

.4

.3

.2

.1

.

ABCDFFABCDFFw

AAABCDAFABCDAAw

AAABCDACABCDAAw

AAABCDABABCDAAw

AAABCDAAABCDAAw

w
LR

n

x












Why use 

continuous 

methods ? 

As these systems of weighting become more refined they 

require: 

 

•More complex mathematics 

•More optimisation through modelling of stochastic effects 

•More powerful computers to run 

 

The question arises: 

Why shift from the simple methods ? 
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1. The simple methods require a 

system of thresholds to function  

Could use a very simple system that has minimal thresholds 

Pros: 

•Easy to implement/understand/teach 

•No speciality software or hardware required 

•Will be reasonably consistent between practitioners 

 

Cons: 

•Rules are often set very conservatively so will waste most of 

the information in the profile 

•Will not be able to be used on a large number of profiles 

•Are usually not a good representation of reality 

1. The simple methods require a 

system of thresholds to function  

Or could use a system that has numerous thresholds 

Pro: 

•Much better representation of reality 

•Uses more of the information 

•Depending on complexity may still not require speciality 

software or hardware 

Cons: 

•Experience has shown that complex systems of rules cannot 

be applied consistently by practitioners. 

•Takes a lot of time for an analyst to interpret and apply rules, 

and then just as much time again for a second analyst to 

review them 

•Increases false exclusion rate 

1. The simple methods require a 

system of thresholds to function  

•Experience 

•Level of conservatism 

•Training  

•Error  

will mean inconsistencies exist between practitioner (or the 

same practitioner at different times) 

 

Experience has shown that multifaceted, interacting networks 

of rules are difficult and impractical to apply to complex 

profiles. 

2. Thresholds suffer from 

‘falling off the cliff’ effect 

A   B A 

Suspect’s - [A,B] Crime Stain - [A] 

Refers to a phenomenon caused by the arbitrary application 

of a threshold whereby the difference of a single unit leads to 

diametrically opposed interpretations 

 

For example – if homozygous threshold was 200rfu and we 

had the following example: 

2. Thresholds suffer from 

‘falling off the cliff’ effect 

If [A] in the crime stain was 199rfu then the suspect is not-excluded 

 

If [A] is 200rfu then the suspect is excluded 

 

In reality the difference in support for the proposition that the 

suspect is the source of DNA between these two scenarios is 

miniscule 

A   B A 

Suspect’s - [A,B] Crime Stain - [A] 

3. Every system has its limit 

Every system has a limit to its capabilities (even continuous 

systems) 

 

However threshold based systems usually have a much 

larger pool of profiles they are unable to handle than 

continuous systems. 

 

As level of expected stochastic variation hinders or inhibits 

interpretation, thresholds tend to break down  

 

e.g. at low levels it is common for heterozygous balance 

thresholds to be dropped. 
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4. Sometimes simple methods 

are anti-conservative 

Whilst simple systems seek to set conservative thresholds, 

they sometimes do the exact opposite 

 

Three common misconceptions are: 

 

Omitting a locus from a calculation is always conservative 

 

-This is not necessarily the case if the locus being omitted 

contains non-concordances with the reference 

4. Sometimes simple methods 

are anti-conservative 

The 2p rule is always conservative when taking dropout into 

account 

 

-Shown previously this is not the case when the required 

dropout approaches the homozygous threshold 

 

Using Pr(D) and Pr(C) method is always conservative 

 

- Not necessarily the case if the inclusion of the suspect 

requires a large heterozygote imbalance to have occurred 

Example of a continuous analysis 

Continuous systems estimates mixture proportions of 

approximately 47% and 53% 

Two person mixed profile 

[15,16] [14,14]  0.172 

[14,16] [14,15]  0.252 

[15,16] [14,15]  1.40E-5 

[16,16] [14,15]  0.007 

[14,16] [15,15]  3.91E-5 

[14,15] [14,16]  0.352 

[15,15] [14,16]  2.74E-4 

[15,16] [14,16]  0.003 

[14,14] [15,16]  0.209 

[14,16] [15,16]  0.002 

[14,15] [16,16]  0.003 

Most 

supported 

genotypes 

 

Known 

genotypes 

included 

D3S1358 

John Buckleton, Duncan Taylor, Jo-Anne 

Bright 

Genotypes             weights 

Weightings as a human diagnostic 

Continuous system 

in practice 

How it works in practise 

LR = 0 

continuous 

co
n

ti
n

u
o
u

s 
sy

st
em
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Using information 

at  2 DNA markers: 

LR = 900 

Using information 

at  all DNA markers: 

LR = 22 million 

Sexual Assault 

Sample: tapelift 

from victims 

underwear 


